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Abstract: An efficient mesh refinement method forh-version finite element analysis is presented based on both
an a-posteriori error indicator and the geometrical quality of mesh. The first step is to refine the meshes on
which the a-posteriori error indicators are relatively higher than the others. The error indicators are obtained by
simplifying the computation of error bounds which are obtained by solving elemental Neumann type subproblems
with the averaged flux for the consistency of the Neumann problems. The simplification of computation means
that the functional space on the mesh uniformly refined with only half size of the coarse mesh is chosen as the test
functional space in the elemental residual form of error equations, thus the cost for computing the error indicators
is quite low. After refinement, some refined triangles will become poorly shaped or distorted, then the second step
is to move the meshes to improve their geometrical quality with Laplacian smoothing algorithm. Two examples
are computed to verify this method and the results show that the refined mesh obtained by both the a-posteriori
error indicator and mesh smoothing gives the optimal convergence and higher accuracy for the results.
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1 Introduction

The subject of adaptive mesh refinement is as old as
finite element method, but now it has the potential to
improve the quality of the bounding on the quantity of
interest in engineering [1–3]. The main objective of
the adaptive mesh refinement is to achieve the optimal
rate of convergence and reach the desired accuracy
with the minimum degrees of freedom. Inh-version
finite element analysis, the number of degrees of free-
dom or elements must reach a larger quantity in order
to obtain more accurate results. When the accuracy
of analysis results obtained from a coarser mesh dose
not meet the demand, the mesh has to be refined for
obtaining an improved solution with better accuracy.

There are two ways to refine the element mesh,
one is uniform, which dividesall elements to gen-
erate new elements to form a new mesh, another is
adaptive, which generates new elements only at the
place whereerror is relatively higher. The comput-
ing on uniform mesh will lead to not only huge cost
of computing, but also less accurate results, as com-
pared with the adaptive mesh with equivalent number
of elements, at the place where intensity may occur.
Adaptive mesh refinement strategies provide a good
basis to improve the accuracy of solutions. The es-

sential part of adaptive finite element calculations is
the estimation of discretization error and the design
of refined meshes. The energy norm of error,a(e,e),
which concerns to the derivative of solution, is often
chosen to measure the error in usual error estimators.
The asymptotically optimal mesh is defined by [4–6]
as one in which all error indicators are equal, and the
value of the optimal error is stable under perturbations
of the optimal mesh. Adaptive refinement involves not
only the introduction of new elements where needed,
but also be combined with mesh regularization (i.e.,
the movement of elements) to further improve the e-
quality of the mesh [7–9]. When an error estimator
of an element is relatively larger, the element will be
divided. There are two basic methods for dividing tri-
angles used in practice: regular division and bisection.
To divide a triangle by regular division, one connect-
s the midpoints of the sides of the triangle to obtain
four triangles similar to the original. The incompati-
bilities will arise when only some of the triangles are
divided by regular division, the hanging nodes will
appear. The method often used for solving the prob-
lem of incompatibilities is to connect the hanging n-
ode and the opposite vertex to form two elements, like
the bisection method that is used to divide triangles
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by connecting a vertex to the midpoint of the opposite
side. The bisection method is usually performed to di-
vide the longest edge, this choice is intuitively reason-
able since it divides the largest angle. No matter what
method, the regular method or the bisection method,
is used to refine the mesh, some refined triangles will
become poorly shaped or distorted, therefore, some
node point adjustment methods such as mesh smooth-
ing are used to improve the geometrical quality of the
mesh [10–14].

The commonly used mesh smoothing technique
comprises local methods that operate on vertex at a
time to improve mesh quality in a neighborhood of
that vertex. Some number of sweeps over the ad-
justable vertices are performed to achieve an overal-
l improvement for the mesh. Local mesh smoothing
technique operates using data from the neighborhood
of a grid point that is being adjusted. Laplacian s-
moothing technique is such a method, which moves
the free vertex to the geometric center of its incident
vertices with an inexpensive cost of computation.

In this paper, we develop an adaptive algorithm
based on a simplified a-posteriori error estimation and
mesh smoothing. The adaptive refinement procedure
includes two steps, one is to refine the mesh by a-
posteriori error estimator, another is to move the mesh
to improve its geometrical quality. The paper is orga-
nized as follows, in Section 2, the basic concepts and
the error estimation are introduced; in Section 3, the
algebra form of the error estimation in an element is
presented; in Section 4, examples are given to illus-
trate the algorithm; in the last section, the conclusions
are drew.

2 A posteriori error estimator

We consider the standard self-adjoint, positive defi-
nite, elliptic equation

−∇(p∇u)+qu= f in Ω,

u= 0 onΓD,

p
∂u
∂n

= g on ΓN,

with p > 0, q ≥ 0, and f and g the given smooth
functions in the spaceL2(Ω). DomainΩ is a bound-
ed region inℜ2. The boundary of the region,∂Ω, is
assumed piecewise smooth and composed of Dirich-
let portion ΓD and Neumann portionΓN, i.e. ∂Ω =
ΓD ∪ΓN. The weak form of the above equation is: find
u in H1(Ω) such that

a(u,v) = ( f ,v)+ 〈g,v〉 , ∀v∈ H1(Ω) (1)

in which

a(u,v) =
∫

Ω
p∇u·∇v+quvdΩ,

( f ,v) =
∫

Ω
f vdΩ,

〈g,v〉=
∫

ΓN

gvdΓ.

In order to obtain the approximate solutions of the
weak problem, a finite dimensional counterpart of all
these variational forms above must be built using the
finite element method. Two triangulations of the com-
putational domainΩ are considered: the working or
coarseH-mesh,TH , consisting ofKH elementsTH ;
the “truth” or fine h-mesh,Th, consisting ofKh el-
ementsTh, and one fine mesh is only in one coarse
mesh. To each of these meshes we associate regular
piecewise linear continuous finite element subspaces,

XH = {v∈ X | v|TH ∈ P1(TH), ∀TH ∈ TH};

Xh = {v∈ X | v|Th ∈ P1(Th), ∀Th ∈ Th},

whereP1(T) denotes the space of linear polynomials
over T. As we require that a fine meshTh be only
within one coarse elementTH , it is obvious thatXH ⊂
Xh ⊂ H1(Ω).

Let EI represent the coarse element edges in the
interior of Ω, here we assume that boundary∂Ω con-
sist of the edges ofTH ∈ TH . Let NTH denote all
neighbor elements sharing common edges∂TH with
the coarse elementTH , i.e.

NTH =
{

T ′
H ∈ TH | T ′

H ∩TH =E I
}

.

Let E (TH) and E (Th) denote the set of open edges
in the triangulationTH andTh, respectively, then ac-
cording to the above assumption, for coarse mesh we
haveE (TH) = EI ∪ΓD ∪ΓN.

Let uH be the solution for the coarse mesh

a(uH ,v) = ( f ,v)+ 〈g,v〉 , ∀v∈ XH (2)

anduh be the solution for the refined mesh

a(uh,v) = ( f ,v)+ 〈g,v〉 , ∀v∈ Xh (3)

then we have the residual

R(v) = ( f ,v)+ 〈g,v〉−a(uH ,v), ∀v∈ Xh, (4)

and the error
e= uh−uH ,

then according to (2) and (3), we have

R(v) = a(e,v).
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There will bejumpbetween elements, the bilinear for-
m of jump is j : X̂h×Qh 7→ ℜ,

j(v,v) = ∑
∂TH∈EI

∫

∂TH

ϒ∂TH
(v) v|∂TH

dΓ, (5)

where ϒ∂TH
(v) is the jump in v across∂TH when

∂TH ∈ EI . We will use an approximate to thejump
of the fluxes on the element edges for constructing the
error indictors in this study. There arefluxeson the
edges of elements, and thejumpof fluxesis

j(v,v)|∂TH
=

∫

∂TH

1
2

(

∂uH

∂n

∣

∣

∣

∣

+

∂TH

−
∂uH

∂n

∣

∣

∣

∣

−

∂TH

)

v|∂TH
dΓ.

Exactly solving the error that concerns thejump is d-
ifficult or impossible, an alternative is to smooth the
jumpand form an approximate equation for the error
on elementTH , and to make overall bound on the error
of whole finite element model.

Let us define the approximate flux by smooth-
ing the fluxes of two neighbor elements on a common
boundary with averaging of the two fluxes, i.e.

∂uH

∂nT
=

1
2

(

∂uH

∂n

∣

∣

∣

∣

+

∂TH

+
∂uH

∂n

∣

∣

∣

∣

−

∂TH

)

=
1
2

(

∂uH

∂n

∣

∣

∣

∣

∂TH

+
∂uH

∂n

∣

∣

∣

∣

∂T ′
H∈NTH

)

,

wherenTH is the outward normal of the boundary of
elementTH .

Let ê∈ Xh be an error functional, which satisfies
the following equation define on elementTH ∈ TH

aTH (ê,v) = R̄TH (v−IHv), ∀v∈ Xh (6)

whereIH : Xh 7→XH is a polynomial interpolation op-
erator, and

R̄TH (v−IHv) = RTH (v−IHv)

+

〈

p
∂uH

∂nTH

,v−IHv

〉

∂TH∩εI

= ( f ,v−IHv)TH + 〈g,v−IHv〉∂TH∩εB

−aTH (uH ,v−IHv)+

〈

p
∂uH

∂nTH

,v−IHv

〉

∂TH∩εI

.

(7)

Let us examine the consistency of equation (6). Ifv=
C is a constant, then we haveC=IHC, this is because
C belongs to bothXH andXh, therefore from equation
(7), its right hand side is 0, and then̄RTH (v−IHv) = 0
for v being a constant.

Another way to examine the consistent is to use
equation (4), becauseC satisfiesa(uh,v) = ( f ,v) +
〈g,v〉, for all v ∈ Xh, and a(uH ,v) = ( f ,v) + 〈g,v〉,
for all v ∈ XH , so that a(uh,C) = ( f ,C) + 〈g,C〉,
anda(uH ,C) = ( f ,C)+ 〈g,C〉. Thereforea(uh,C) =
a(uH ,C), a(e,C) = a(uh − uH ,C) = 0. We can solve
e that is in the infinite functional space with an ap-
proximate solution ˆe in finite functional space, that is
aTH (ê,v) = 0.

Let e= v, and sum all elements inTH , the fol-
lowing equations are obtained

a(ê,e) = R(e)+ ∑
TH∈TH

〈

p
∂uH

∂nTH

,e

〉

∂TH∩εI

−R(IHe)

− ∑
TH∈TH

〈

(IHe) p
∂uH

∂nTH

,e

〉

∂TH∩εI

,

while

∑
TH∈TH

〈

p
∂uH

∂nTH

,e

〉

∂TH∩εI

= 0; (8)

R(IHe) = ∑
TH∈TH

RTH (IHe) = 0; (9)

∑
TH∈TH

〈

(IHe) p
∂uH

∂nTH

,e

〉

∂TH∩εI

= 0; (10)

(8) is due to∑TH∈TH
∂uH
∂nTH

∣

∣

∣

εI

= 0, this is because on an

inner edge of elementsTH andT ′
H ,

∂uH

∂nT
=−

∂uH

∂nT ′
.

(9) is due toIHe∈XH , and (10) is for the same reason
as (8). Then we have

a(ê,e) = R(e) = a(e,e).

Because

0≤ (ê−e, ê−e)

= a(ê, ê)+a(e,e)−2a(e, ê)

= a(ê, ê)−a(e,e),

then
a(e,e) ≤ a(ê, ê).

If we use||u||2 = a(u,u) to express the energy norm
of solution, then the above inequality means||ê|| is an
upper bound of||e||.
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3 The Calculation of local problems

Let us assume there will ben finite element nodes on
the mesh, andφ i

H(x,y) (for i = 1,2, · · · ,n) is the lin-
ear basis function corresponding to nodei, that sat-
isfiesφ i

H(x,y) = 1 at nodei, andφ i
H(x,y) = 0 at the

others nodes. That means it is one at nodei, and on
the boundary of the patch formed by the elements that
contain nodei, it is zero. The basis functions satisfy

n

∑
i=1

φ i
H(x,y) = 1.

The error estimator on each element is used as a crite-
rion for adaptive refining the mesh. We consider each
elementTH as a subproblem to implement the algo-
rithm for the error estimator. Now let the finite el-
ement solution of elementTH be {u1

H ,u
2
H ,u

3
H}

T , and
φ i

H(x,y) be the basis functions corresponding to the
nodesi = 1, · · · ,3 of elementTH , respectively, that is

φ1
H(x,y) =

1
2STH

[(y2−y3)x+(x3−x2)y+

(x2y3−x3y2)] ;

φ2
H(x,y) =

1
2STH

[(y3−y1)x+(x1−x3)y+

(x3y1−x1y3)] ;

φ3
H(x,y) =

1
2STH

[(y1−y2)x+(x2−x1)y+

(x1y2−x2y1)] ,

in which STH is the area of elementTH

STH =
1
2

∣

∣

∣

∣

∣

∣

1 x1 y1

1 x2 y2

1 x3 y3

∣

∣

∣

∣

∣

∣

.

The interpolation function of elementTH based
on the basis functions is expressed as

uH |TH =
3

∑
i=1

ui
Hφ i

H(x,y). (11)

In order to calculate the error estimator which is
one higher order than the finite element solution, we
will select the middle points on each element edge
as the new nodes to generate 4 new fine elements
on TH . Let the basis functions for the new mesh be

φ1
h (x,y), · · · ,φ6

h (x,y),

φ1
h =

1
STH

[

(y2−y3)x+(x3−x2)y+
1
2
(x1+x2)(y1+y3)

−1
2(x1+x3)(y1+y2)

]

on T1
h ;

φ2
h =

1
STH

[

(y3−y1)x+(x1−x3)y+
1
2
(x2+x3)(y1+y2)

−1
2(x1+x2)(y2+y3)

]

on T2
h ;

φ3
h =

1
STH

[

(y1−y2)x+(x2−x1)y+
1
2
(x1+x3)(y2+y3)

−
1
2
(x2+x3)(y1+y3)

]

on T3
h ;

φ4
h =

1
STH

[(y1−y2)x+(x2−x1)y+(x1+x2)y2

−x2(y1+y2)] on T2
h ;

φ4
h =

1
STH

[(y3−y1)x+(x1−x3)y+x3(y1+y3)

−(x1+x3)y3] on T3
h ;

φ4
h =

1
STH

[

(y3−y2)x+(x2−x3)y+
1
2
(x1+x3)(y1+y2)

−
1
2
(x1+x2)(y1+y3)

]

on T4
h ;

φ5
h =

1
STH

[(y1−y2)x+(x2−x1)y+x1(y1+y2)

−(x1+x2)y1] on T1
h ;

φ5
h =

1
STH

[(y2−y3)x+(x3−x2)y+(x2+x3)y3

−x3(y2+y3)] on T3
h ;

φ5
h =

1
STH

[

(y1−y3)x+(x3−x1)y+
1
2
(x1+x2)(y2+y3)

−
1
2
(x2+x3)(y1+y2)

]

on T4
h ;

φ6
h =

1
STH

[(y3−y1)x+(x1−x3)y+(x1+x3)y1

−x1(y1+y3)] on T1
h ;

φ6
h =

1
STH

[(y2−y3)x+(x3−x2)y+x2(y2+y3)

−(x2+x3)y2] on T2
h ;

φ6
h =

1
STH

[

(y2−y1)x+(x1−x2)y+
1
2
(x2+x3)(y1+y3)

−
1
2
(x1+x3)(y2+y3)

]

on T4
h .

They form a basis of the spaceXh. In fact we
will not really divide the meshTH into four ele-
ments in this step. Based on the fourvirtual elements
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T1
h ,T

2
h ,T

3
h ,T

4
h , the error estimator can be spanned by

the basis functionsφ1
h (x,y), · · · , φ6

h (x,y)

eTH =
6

∑
i=1

ei
TH

φ i
h(x,y). (12)

There will bem refined elements andn nodes in the

HTN

TH

1

2

3

4

5

6

T
1

h

Th

Th

Th

4

2

3

Figure 1: A piecewise finite element space is con-
structed with the uniform mesh refinement on element
T.

working mesh. Let the basis functions for the refined
element space in a working mesh beφ1

h(x,y), φ2
h(x,y),

· · · , φn
h (x,y), thus the solution function of elementTH

can also be spanned by the basis functions of the re-
fined element space, i.e.

uH =
n

∑
i=1

uH |TH (P
i
h)φ

i
h(x,y)

in whichPi
h is the coordinate of theith node of refined

mesh. the functionv on the working elementTH is

v=
6

∑
j=1

v jφ j
h(x,y), (13)

then on elementTH

v−IHv=
n

∑
j=1

φ j
h(x,y)−IHφ j

h(x,y))

=
n

∑
j=1

v j φ̄ j
h(x,y). ∀v∈ Xh (14)

Substitute (13) and (14) to (7), we have

AeTH = c (15)

in which
c= f +g−BTuH |TH +d

and

uH |TH =
{

u1
H , · · · ,u

6
H

}T

=

{

u1
H ,u

2
H ,u

3
H ,

1

2
(u2

H +u3
H),

1

2
(u3

H +u1
H),

1

2
(u1

H +u2
H)

}T

,

A =

∫

TH

p∇φh(x,y)∇φ T
h (x,y)+qφ h(x,y)φ

T
h (x,y)dΩ,

f =
∫

TH

f φ̄ h(x,y)dΩ,

g=
∫

∂TH∩ΓN

gφ̄ h(x,y)dΓ,

B =
∫

TH

p∇φh(x,y)∇φ̄ T
h (x,y)+qφ h(x,y)φ̄

T
h (x,y)dΩ,

d =

∫

∂TH∩εI

1
2

(

p
∂uH

∂n

∣

∣

∣

∣

∂TH

+ p
∂uH

∂n

∣

∣

∣

∣

∂T ′
H

)

φ̄h(x,y)dΓ.

in which φ̄ h = φ h−φH , and

φ h ={φ1
h (x,y),φ2

h (x,y), · · · ,φ6
h (x,y)}

T ,

φH ={φ1
H(x,y),φ2

H (x,y),φ3
H (x,y),0,0,0}

T .

Then we obtain the error estimator on elementTH

||eTH ||
2 = eT

TH
AeTH .

It is well known that in (15)A is a 6× 6 se-
mi positive definite matrix with rank being 5, no u-
nique solution can be found from solving problem
(15). Let’s take the Poisson problem for an ex-
ample to illustrate how to add condition to make
the problem well posed. For Poisson problemA =
∫

TH
p∇φ h(x,y)∇φ T

h (x,y)dΩ, if we add the zero mean
condition oneTH , i.e.

∫

TH
eTH dΩ = 0, the unique solu-

tion can be insured [6]. According to (12) we have

e1
TH

+e2
TH

+e3
TH

+3e4
TH

+3e5
TH

+3e6
TH

= 0.

Let h = (1,1,1,3,3,3)T , addinghTeTH = 0 to (15)
leads to

ĀeTH = c̄

in which

Ā =

{

A
hT

}

, c̄=
{

c
0

}

.

Now there are 7 equations used to determine 6
unknown variables, because the row rank ofĀ is 6,
the unique solution can be obtained.
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4 Examples

The first example is a Poisson problem, looking foru
satisfying

−∇2u= sin(16xy),

within the domain of a squareΩ = [0,1]× [0,1], and
restricted to the Dirichlet boundaryu = 0 on ΓD =
AB∪BC∪CD∪CA. The Fig. 2 shows the initial mesh
of the problem [15]. The second example is a Laplace
equation, looking foru satisfying

−∇2u= 0,

and restricted to the Dirichlet boundaryu= 0 onAF,
and the Neumann boundary∂u/∂n= y(1−y) onED,
refer to the Fig. 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A B

CD

Figure 2: Initial mesh of example 1 with 54 nodes and
86 elements.
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A B

C D

EF

Figure 3: Initial mesh of example 2 with 48 nodes and
72 elements.

For the mesh smoothing, we use JIGGLEMESH
function of MATLAB to do the smoothing in each it-

Table 1: The results of||u||2 in Example 1.

Smoothed Non smoothed
NoE ||u||2 NoE ||u||2

86 3.13433E-3 86 3.13433E-3
165 3.39858E-3 165 3.39244E-3
376 3.69418E-3 425 3.66329E-3
981 3.85979E-3 801 3.77872E-3

1310 3.99103E-3 1503 3.91938E-3
2134 4.08233E-3 2438 4.06015E-3
4356 4.13219E-3 6119 4.12822E-3
6350 4.15239E-3 8574 4.14138E-3

11470 4.17093E-3 21016 4.17172E-3

Table 2: The results of||u||2 in example 2.
Smoothed Non smoothed

NoE ||u||2 NoE ||u||2

72 0.830817 72 0.830817
106 0.926109 104 0.929284
205 0.986871 258 0.990728
417 1.017258 509 1.020839
684 1.031505 1318 1.036129

1227 1.037550 2052 1.040352
3763 1.044715 5129 1.045198
5444 1.046297 8286 1.046685
8315 1.047112 14653 1.047680

eration, each node that is not located on an edge seg-
ment is moved toward the center of mass of the poly-
gon formed by the adjacent triangles. The grammar of
the function isNP=jigglemesh(DP, DE, DE,
OPT, ITER), in whichNP is the jiggled coordinates
of the nodes,DP, DE andDE are the non jiggled mesh
data. This process is repeated according to the setting
of theOpt andIter variables.

Table 1 gives the results of||u||2 with respect to
NoE, the number of elements, in the two situations of
smoothing and non-smoothing of meshes for example
1. Fig. 4 and Fig. 5 show the adaptive meshes in ex-
ample 1 with smoothing and non-smoothing in some
iterations of computing, respectively. In the caption-
s of the figures, we also give the relative error of the
energy norm of solutions,||er ||, on different meshes.

Table 2 gives the results of||u||2 with respect
to NoE, in the two situations of smoothing and non-
smoothing of meshes for example 2.

Fig. 6 and Fig. 7 show the adaptive meshes in ex-
ample 2 with smoothing and non-smoothing in some
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Figure 4: Non smoothed meshes in example 1. (a) 234 nodes, 425 elements,||er ||= 3.5716%; (b) 794 nodes, 1503
elements,||er || = 2.5801%; (c) 1274 nodes, 2438 elements,||er || = 1.8178%; (d) 4388 nodes, 8574 elements,
||er ||= 1.1705%.
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Figure 5: Smoothed meshes in example 1. (a) 208 nodes, 376 elements,||er || = 3.4670%; (b) 695 nodes, 1310
elements,||er || = 2.2250%; (c) 2249 nodes, 4356 elements,||er || = 1.2605%; (d) 5854 nodes, 11470 elements,
||er ||= 0.8163%.
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Figure 6: Non smoothed meshes in example 2. (a) 279 nodes, 509 elements,||er ||= 1.6253%; (b) 698 nodes, 1318
elements,||er || = 1.0879%; (c) 1909 nodes, 3691 elements,||er || = 0.7095%; (d) 4237 nodes, 8286 elements,
||er ||= 0.4204%.
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Figure 7: Smoothed meshes in example 2. (a) 285 nodes, 515 elements,||er || = 1.4868%; (b) 654 nodes, 1227
elements,||er || = 1.0237%; (c) 1952 nodes, 3763 elements,||er || = 0.6038%; (d) 4255 nodes, 8315 elements,
||er ||= 0.3688%.

2.8 3 3.2 3.4 3.6 3.8 4
−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

Jiggled
Non−jiggled

(a)

2.6 2.8 3 3.2 3.4 3.6

−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

Jiggled
Non−jiggled

(b)

Figure 8: (a) The convergence rate for example 1, lg||er ||
2 vs lgN. (b) The convergence rate for example 2, lg||er ||

2

vs lgN.

iterations of computing, respectively. Fig. 8 shows
the convergence rates for the two examples, lg||er ||e2

vs lgN, andN is the number of DOFs. We can find
that they have the same convergence rates for both the
smoothed and non smoothed meshes, but the non s-
moothed meshes lead to a higher accuracy of the re-
sults.

5 Conclusions

An efficient mesh adaptive method is presented in this
paper, compared with the other mesh refined method-
s, this method has some advantages. Firstly, this is an
error indicator based on elemental computing, and it

needs only to calculate the error between the coarse
mesh and the regular refined mesh with 6 elements,
thus the analytical equations can be obtained for the
error indicator of each element. Secondly, the well
posedness of the resulting equation for error indica-
tors is insured, due to the mapping between the coarse
elements. Thirdly, the implementation of the method
is very simple, because the algebra equation has been
derived, it is not a hard work to program the matri-
ces computing with Matlab. Fourthly, it is very effi-
cient, because on each element, we only need to solve
a low dimensional algebra equation. At last, the ex-
amples show the method stable and efficient, and the
smoothed mesh also increases the accuracy of results.
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